HildeSchjerven.net

Educational articles in General Biology


What are Stem Cells?

Stem cells are unique because they combine two key properties: Pluripotency and self-renewal. Pluripotency means that the stem cells can differentiate and give rise to multiple different cell types. In addition, they have the ability to divide and self-renew to maintain the original stem cell population.

There are two principally different types of stem cells: Embryonic stem (ES) cells and adult stem cells (or tissue-specific stem cells). In addition, induced pluripotent stem (iPS) cells are very similar to ES cells, and are the focus of intense ongoing research and development.

Embryonic stem (ES) cells arise from the fertilization of an egg by a sperm. The first few rounds of cell division this fertilized egg undergoes create both the extra-embryonic tissue as well as a pool of identical ES cells that eventually will give rise to the new individual. The unique ability of ES cells to give rise to absolutely all cell types in the body has led to increased interest in these cells for both basic and medical research. Such research can improve our understanding of normal development and genetic diseases, and also has a potential for development of tissue regeneration therapy. However, there is also controversy in regards to ethical issues when it comes to the use of human ES cells.

Researchers have developed a method where mature differentiated cells can be reprogrammed to become immature pluripotent cells, named induced pluripotent stem (iPS) cells. These iPS cells are found to be very similar to primary ES cells, but are not identical. These cells provide an alternative source of pluripotent cells, and iPS and ES cells therefore remain the focus of intense research, both to understand the mechanisms of pluripotency and to improve the method of reprogramming to create iPS cells.

The 2012 Nobel Prize in Physiology or Medicine was awarded to Sir John B. Gurdon and Dr. Shinya Yamanaka for "the discovery that mature cells can be reprogrammed to become pluripotent" (source: http://www.nobelprize.org/), further emphasizing the importance of research on reprogramming and induced pluripotency.

Adult stem cells are also referred to as tissue specific stem cells and can give rise to all cell types within the specific tissue. One example of an adult stem cell is the hematopoietic stem cell (HSC). In adults, most HSC are found in the bone marrow (BM), but can be immobilized into the blood stream for instance for the purpose of hematopoietic stem cell transplantation for treatment of leukemia. HSC are pluripotent and give rise to red blood cells, platelets, and all white blood cells required in the immune system. These stem cells alternate between a quiescent (non-dividing, resting) and a proliferative state (undergoing cell divisions), and provide a life-long source of all blood and immune cells for the individual.

The self-renewal property is crucial for life-long replenishment of the downstream cell types. Exhaustion (or defective self-renewal) of stem cells will lead to disease. For instance, an exhaustion of the hematopoietic stem cells, which give rise to all blood cells, will lead to anemia and immunodeficiency. Anemia is the reduction of red blood cells that are crucial for oxygen transport. Immunodeficiency is a defect in any immune cell that is required to protect your body against infection, damage and cancer.

However, the property of self-renewal is also potentially dangerous, as uncontrolled self-renewal is a key feature of cancer cells. Thus, in healthy stem cells, as well as other diving cells, self-renewal is tightly regulated. A critical combination of mutations can lead to loss of this regulation and give rise to cancer. Control of self-renewal is also a major concern and challenge that scientists face in regards to the potential use of ES or iPS cells for tissue regeneration therapy.

In summary, when talking about stem cells, it is important to understand their unique properties and to distinguish between three separate types of stem cells. 1: Embryonic stem cells come from a fertilized egg and give rise to all cell types of the body, but only exist in the early stages of embryogenesis. 2: Induced pluripotent stem (iPS) cells are created from mature cells by reprogramming. 3: Adult, tissue-specific stem cells are maintained throughout our lifetime and give rise to all cell types within a specific tissue.


Note: For a schematic presentation of the research that led to the 2012 Nobel Prize in Physiology or Medicine, please see this link

.

Latest Updates:

10/15-2012: Educational article: What are Stem Cells?



Recommend this page:

If you find this site useful, feel free to recommend or share this page with your friends and colleagues, as well as sharing on Google+ (by clicking the button below):



.

Home | Contact | Site Map | Privacy Policy

Copyright © 2012-2016 by Hilde Schjerven